\(\int \frac {(d+e x)^{5/2}}{(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}} \, dx\) [675]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [B] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 48 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^{3/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \]

[Out]

-2/3*(e*x+d)^(3/2)/c/d/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(3/2)

Rubi [A] (verified)

Time = 0.01 (sec) , antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {662} \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^{3/2}}{3 c d \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{3/2}} \]

[In]

Int[(d + e*x)^(5/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*c*d*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(3/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (d+e x)^{3/2}}{3 c d \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{3/2}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.02 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.77 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 (d+e x)^{3/2}}{3 c d ((a e+c d x) (d+e x))^{3/2}} \]

[In]

Integrate[(d + e*x)^(5/2)/(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2),x]

[Out]

(-2*(d + e*x)^(3/2))/(3*c*d*((a*e + c*d*x)*(d + e*x))^(3/2))

Maple [A] (verified)

Time = 0.54 (sec) , antiderivative size = 42, normalized size of antiderivative = 0.88

method result size
default \(-\frac {2 \sqrt {\left (c d x +a e \right ) \left (e x +d \right )}}{3 \sqrt {e x +d}\, \left (c d x +a e \right )^{2} c d}\) \(42\)
gosper \(-\frac {2 \left (c d x +a e \right ) \left (e x +d \right )^{\frac {5}{2}}}{3 c d \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}\) \(50\)

[In]

int((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x,method=_RETURNVERBOSE)

[Out]

-2/3/(e*x+d)^(1/2)*((c*d*x+a*e)*(e*x+d))^(1/2)/(c*d*x+a*e)^2/c/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 107 vs. \(2 (42) = 84\).

Time = 0.27 (sec) , antiderivative size = 107, normalized size of antiderivative = 2.23 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 \, \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{3 \, {\left (c^{3} d^{3} e x^{3} + a^{2} c d^{2} e^{2} + {\left (c^{3} d^{4} + 2 \, a c^{2} d^{2} e^{2}\right )} x^{2} + {\left (2 \, a c^{2} d^{3} e + a^{2} c d e^{3}\right )} x\right )}} \]

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="fricas")

[Out]

-2/3*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*sqrt(e*x + d)/(c^3*d^3*e*x^3 + a^2*c*d^2*e^2 + (c^3*d^4 + 2*a
*c^2*d^2*e^2)*x^2 + (2*a*c^2*d^3*e + a^2*c*d*e^3)*x)

Sympy [F(-1)]

Timed out. \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate((e*x+d)**(5/2)/(a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2),x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.21 (sec) , antiderivative size = 28, normalized size of antiderivative = 0.58 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2}{3 \, {\left (c^{2} d^{2} x + a c d e\right )} \sqrt {c d x + a e}} \]

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="maxima")

[Out]

-2/3/((c^2*d^2*x + a*c*d*e)*sqrt(c*d*x + a*e))

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 97 vs. \(2 (42) = 84\).

Time = 0.29 (sec) , antiderivative size = 97, normalized size of antiderivative = 2.02 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2 \, e^{3}}{3 \, {\left (\sqrt {-c d^{2} e + a e^{3}} c^{2} d^{3} {\left | e \right |} - \sqrt {-c d^{2} e + a e^{3}} a c d e^{2} {\left | e \right |}\right )}} - \frac {2 \, e^{4}}{3 \, {\left ({\left (e x + d\right )} c d e - c d^{2} e + a e^{3}\right )}^{\frac {3}{2}} c d {\left | e \right |}} \]

[In]

integrate((e*x+d)^(5/2)/(a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2),x, algorithm="giac")

[Out]

-2/3*e^3/(sqrt(-c*d^2*e + a*e^3)*c^2*d^3*abs(e) - sqrt(-c*d^2*e + a*e^3)*a*c*d*e^2*abs(e)) - 2/3*e^4/(((e*x +
d)*c*d*e - c*d^2*e + a*e^3)^(3/2)*c*d*abs(e))

Mupad [B] (verification not implemented)

Time = 12.47 (sec) , antiderivative size = 110, normalized size of antiderivative = 2.29 \[ \int \frac {(d+e x)^{5/2}}{\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}} \, dx=-\frac {2\,\sqrt {d+e\,x}\,\sqrt {c\,d^2\,x+c\,d\,e\,x^2+a\,d\,e+a\,e^2\,x}}{3\,\left (a^2\,c\,d^2\,e^2+a^2\,c\,d\,e^3\,x+2\,a\,c^2\,d^3\,e\,x+2\,a\,c^2\,d^2\,e^2\,x^2+c^3\,d^4\,x^2+c^3\,d^3\,e\,x^3\right )} \]

[In]

int((d + e*x)^(5/2)/(x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2),x)

[Out]

-(2*(d + e*x)^(1/2)*(a*d*e + a*e^2*x + c*d^2*x + c*d*e*x^2)^(1/2))/(3*(c^3*d^4*x^2 + a^2*c*d^2*e^2 + c^3*d^3*e
*x^3 + 2*a*c^2*d^3*e*x + a^2*c*d*e^3*x + 2*a*c^2*d^2*e^2*x^2))